Stability of commuting maps and Lie maps
Studia Mathematica, Tome 213 (2012) no. 1, pp. 25-48
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on $A$ is near an actual commuting continuous linear (resp. quadratic) map on $A$. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.
Keywords:
ultraprime banach algebra prove each approximately commuting continuous linear quadratic map near actual commuting continuous linear resp quadratic map furthermore analysis study close approximate lie isomorphisms approximate lie derivations actual lie isomorphisms lie derivations respectively
Affiliations des auteurs :
J. Alaminos 1 ; J. Extremera 1 ; Š. Špenko 2 ; A. R. Villena 1
@article{10_4064_sm213_1_3,
author = {J. Alaminos and J. Extremera and \v{S}. \v{S}penko and A. R. Villena},
title = {Stability of commuting maps and {Lie} maps},
journal = {Studia Mathematica},
pages = {25--48},
publisher = {mathdoc},
volume = {213},
number = {1},
year = {2012},
doi = {10.4064/sm213-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-1-3/}
}
TY - JOUR AU - J. Alaminos AU - J. Extremera AU - Š. Špenko AU - A. R. Villena TI - Stability of commuting maps and Lie maps JO - Studia Mathematica PY - 2012 SP - 25 EP - 48 VL - 213 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm213-1-3/ DO - 10.4064/sm213-1-3 LA - en ID - 10_4064_sm213_1_3 ER -
J. Alaminos; J. Extremera; Š. Špenko; A. R. Villena. Stability of commuting maps and Lie maps. Studia Mathematica, Tome 213 (2012) no. 1, pp. 25-48. doi: 10.4064/sm213-1-3
Cité par Sources :