Homotonic algebras
Studia Mathematica, Tome 195 (2009) no. 3, pp. 287-295

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An algebra $\mathcal{A}$ of real- or complex-valued functions defined on a set ${\bf T}$ shall be called homotonic if $\mathcal{A}$ is closed under taking absolute values, and for all $f$ and $g$ in $\mathcal{A}$, the product $f\times g$ satisfies $|f\times g|\le|f|\times|g|$. Our main purpose in this paper is two-fold: to show that the above definition is equivalent to an earlier definition of homotonicity, and to provide a simple inequality which characterizes submultiplicativity and strong stability for weighted sup norms on homotonic algebras.
DOI : 10.4064/sm195-3-7
Mots-clés : algebra mathcal real complex valued functions defined set shall called homotonic mathcal closed under taking absolute values mathcal product times satisfies times times main purpose paper two fold above definition equivalent earlier definition homotonicity provide simple inequality which characterizes submultiplicativity strong stability weighted sup norms homotonic algebras

Michael Cwikel 1 ; Moshe Goldberg 1

1 Department of Mathematics Technion – Israel Institute of Technology Haifa 32000, Israel
@article{10_4064_sm195_3_7,
     author = {Michael Cwikel and Moshe Goldberg},
     title = {Homotonic algebras},
     journal = {Studia Mathematica},
     pages = {287--295},
     publisher = {mathdoc},
     volume = {195},
     number = {3},
     year = {2009},
     doi = {10.4064/sm195-3-7},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-7/}
}
TY  - JOUR
AU  - Michael Cwikel
AU  - Moshe Goldberg
TI  - Homotonic algebras
JO  - Studia Mathematica
PY  - 2009
SP  - 287
EP  - 295
VL  - 195
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-7/
DO  - 10.4064/sm195-3-7
LA  - de
ID  - 10_4064_sm195_3_7
ER  - 
%0 Journal Article
%A Michael Cwikel
%A Moshe Goldberg
%T Homotonic algebras
%J Studia Mathematica
%D 2009
%P 287-295
%V 195
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm195-3-7/
%R 10.4064/sm195-3-7
%G de
%F 10_4064_sm195_3_7
Michael Cwikel; Moshe Goldberg. Homotonic algebras. Studia Mathematica, Tome 195 (2009) no. 3, pp. 287-295. doi: 10.4064/sm195-3-7

Cité par Sources :