A radial estimate for the maximal operator associated with the free Schrödinger equation
Studia Mathematica, Tome 176 (2006) no. 2, pp. 95-112

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $d>0$ be a positive real number and $n\geq 1$ a positive integer and define the operator $S_d$ and its associated global maximal operator $S_d^{**}$ by $$\eqalign{ (S_d f)(x,t)= \frac{1}{(2\pi)^n}\int_{{\mathbb R}^n} e^{ix\cdot\xi} e^{it|\xi|^d} \widehat{f}(\xi)\, d\xi,\quad\ f\in {\cal S}({\mathbb R}^n),\ x\in {\mathbb R}^n,\, t\in {\mathbb R},\cr (S_d^{**}f)(x)=\sup_{t\in {\mathbb R}}\left|\frac{1}{(2\pi)^n} \int_{{\mathbb R}^n} e^{ix\cdot\xi} e^{it|\xi|^d} \widehat{f}(\xi)\, d\xi\right|,\quad\ f\in {\cal S}({\mathbb R}^n),\ x\in {\mathbb R}^n,\cr}$$ where $\widehat{f}$ is the Fourier transform of $f$ and ${\cal S}({\mathbb R}^n)$ is the Schwartz class of rapidly decreasing functions. If $d=2$, $S_d f$ is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions $ f\in {\cal S}({\mathbb R}^n)$, if $n\geq 3$, $0 d\leq 2$, and $p\geq 2n/(n-2)$, the maximal function estimate $$ \bigg(\int_{{\mathbb R}^n}|(S_d^{**}f)(x)|^p\,dx\bigg)^{1/p} \leq C\|f\|_{H_s({\mathbb R}^n)} $$ holds for $s>n(1/2-1/p)$ and fails for $s n(1/2-1/p)$, where $H_s({\mathbb R}^n)$ is the $L^2$-Sobolev space with norm $$ \|f\|_{H_s({\mathbb R}^n)}=\bigg(\int_{{\mathbb R}^n}(1+|\xi|^2)^s|\widehat{f}(\xi)|^2\, d\xi\bigg)^{1/2}. $$ We also prove that for radial functions $ f\in {\cal S}({\mathbb R}^n)$, if $n\geq 3$, $n/(n-1) d n^2/2(n-1)$, then the estimate $$ \bigg(\int_{{\mathbb R}^n}|(S_d^{**}f)(x)|^{2n/(n-d)}\,dx\bigg)^{(n-d)/2n} \leq C\|f\|_{H_s({\mathbb R}^n)} $$ holds for $s>d/2$ and fails for $s d/2$. These results complement other estimates obtained by Heinig and Wang [7], Kenig, Ponce and Vega [8], Sjölin [9]–[13], Vega [19]–[20], Walther [21]–[23] and Wang [24].
DOI : 10.4064/sm176-2-1
Keywords: positive real number geq positive integer define operator its associated global maximal operator ** eqalign frac int mathbb cdot widehat quad cal mathbb mathbb mathbb ** sup mathbb frac int mathbb cdot widehat right quad cal mathbb mathbb where widehat fourier transform cal mathbb schwartz class rapidly decreasing functions solution initial value problem schr dinger equation paper prove radial functions cal mathbb geq leq geq n maximal function estimate bigg int mathbb ** bigg leq mathbb holds fails where mathbb sobolev space norm mathbb bigg int mathbb widehat bigg prove radial functions cal mathbb geq n n estimate bigg int mathbb ** n d bigg n d leq mathbb holds fails these results complement other estimates obtained heinig wang kenig ponce vega lin vega walther wang

Sichun Wang 1

1 Defence Research and Development Canada–Ottawa 3701 Carling Avenue Ottawa, Ontario, Canada K1A 0Z4
@article{10_4064_sm176_2_1,
     author = {Sichun Wang},
     title = {A radial estimate for the maximal operator
associated  with the free {Schr\"odinger} equation},
     journal = {Studia Mathematica},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2006},
     doi = {10.4064/sm176-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-1/}
}
TY  - JOUR
AU  - Sichun Wang
TI  - A radial estimate for the maximal operator
associated  with the free Schrödinger equation
JO  - Studia Mathematica
PY  - 2006
SP  - 95
EP  - 112
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-1/
DO  - 10.4064/sm176-2-1
LA  - en
ID  - 10_4064_sm176_2_1
ER  - 
%0 Journal Article
%A Sichun Wang
%T A radial estimate for the maximal operator
associated  with the free Schrödinger equation
%J Studia Mathematica
%D 2006
%P 95-112
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-1/
%R 10.4064/sm176-2-1
%G en
%F 10_4064_sm176_2_1
Sichun Wang. A radial estimate for the maximal operator
associated  with the free Schrödinger equation. Studia Mathematica, Tome 176 (2006) no. 2, pp. 95-112. doi: 10.4064/sm176-2-1

Cité par Sources :