Roth’s theorem in the primes
Annals of mathematics, Tome 161 (2005) no. 3, pp. 1609-1636.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that any set containing a positive proportion of the primes contains a 3-term arithmetic progression. An important ingredient is a proof that the primes enjoy the so-called Hardy-Littlewood majorant property. We derive this by giving a new proof of a rather more general result of Bourgain which, because of a close analogy with a classical argument of Tomas and Stein from Euclidean harmonic analysis, might be called a restriction theorem for the primes.
DOI : 10.4007/annals.2005.161.1609

Ben Green 1

1 Department of Pure Mathematics and Mathematical Statistics, Trinity College, University of Cambridge, Cambridge CB3 0WB, United Kingdom
@article{10_4007_annals_2005_161_1609,
     author = {Ben Green},
     title = {Roth{\textquoteright}s theorem in the primes},
     journal = {Annals of mathematics},
     pages = {1609--1636},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2005},
     doi = {10.4007/annals.2005.161.1609},
     mrnumber = {2180408},
     zbl = {1160.11307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1609/}
}
TY  - JOUR
AU  - Ben Green
TI  - Roth’s theorem in the primes
JO  - Annals of mathematics
PY  - 2005
SP  - 1609
EP  - 1636
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1609/
DO  - 10.4007/annals.2005.161.1609
LA  - en
ID  - 10_4007_annals_2005_161_1609
ER  - 
%0 Journal Article
%A Ben Green
%T Roth’s theorem in the primes
%J Annals of mathematics
%D 2005
%P 1609-1636
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1609/
%R 10.4007/annals.2005.161.1609
%G en
%F 10_4007_annals_2005_161_1609
Ben Green. Roth’s theorem in the primes. Annals of mathematics, Tome 161 (2005) no. 3, pp. 1609-1636. doi : 10.4007/annals.2005.161.1609. http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.1609/

Cité par Sources :