Monoidal properties of Franke’s exotic equivalence
Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5161-5210

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Franke’s reconstruction functor ℛ is known to provide examples of triangulated equivalences between homotopy categories of stable model categories, which are exotic in the sense that the underlying model categories are not Quillen equivalent. We show that, while not being a tensor-triangulated functor in general, ℛ is compatible with monoidal products.

DOI : 10.2140/agt.2024.24.5161
Keywords: model categories, stable homotopy theory

Nikandros, Nikitas 1 ; Roitzheim, Constanze 1

1 School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, United Kingdom
@article{10_2140_agt_2024_24_5161,
     author = {Nikandros, Nikitas and Roitzheim, Constanze},
     title = {Monoidal properties of {Franke{\textquoteright}s} exotic equivalence},
     journal = {Algebraic and Geometric Topology},
     pages = {5161--5210},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2024},
     doi = {10.2140/agt.2024.24.5161},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5161/}
}
TY  - JOUR
AU  - Nikandros, Nikitas
AU  - Roitzheim, Constanze
TI  - Monoidal properties of Franke’s exotic equivalence
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 5161
EP  - 5210
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5161/
DO  - 10.2140/agt.2024.24.5161
ID  - 10_2140_agt_2024_24_5161
ER  - 
%0 Journal Article
%A Nikandros, Nikitas
%A Roitzheim, Constanze
%T Monoidal properties of Franke’s exotic equivalence
%J Algebraic and Geometric Topology
%D 2024
%P 5161-5210
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.5161/
%R 10.2140/agt.2024.24.5161
%F 10_2140_agt_2024_24_5161
Nikandros, Nikitas; Roitzheim, Constanze. Monoidal properties of Franke’s exotic equivalence. Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 5161-5210. doi: 10.2140/agt.2024.24.5161

Cité par Sources :