Cartesian fibrations of (∞,2)–categories
Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 4731-4778

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce four variance flavors of (co)cartesian fibrations of ∞–bicategories with ∞–bicategorical fibers, in the framework of scaled simplicial sets. Given a map p: ℰ→ℬ of ∞–bicategories, we define p–(co)cartesian arrows and inner/outer triangles by means of lifting properties against p, leading to a notion of 2–inner/outer (co)cartesian fibrations as those maps with enough (co)cartesian lifts for arrows and enough inner/outer lifts for triangles, together with a compatibility property with respect to whiskerings in the outer case. By doing so, we also recover in particular the case of ∞–bicategories fibered in ∞–categories studied in previous work. We also prove that equivalences of such fibrations can be tested fiberwise. As a motivating example, we show that the domain projection d ⁡ : Fun ⁡ gr(Δ1,𝒞) →𝒞 is a prototypical example of a 2–outer cartesian fibration, where Fun ⁡ gr(X,Y ) denotes the ∞–bicategory of functors, lax natural transformations and modifications. We then define 2–inner and 2–outer flavors of (co)cartesian fibrations of categories enriched in ∞–categories, and we show that a fibration p: ℰ→ℬ of such enriched categories is a (co)cartesian 2–inner/outer fibration if and only if the corresponding map N ⁡ sc ⁡ (p): N ⁡ sc ⁡ ℰ→ N ⁡ sc ⁡ ℬ is a fibration of this type between ∞–bicategories.

DOI : 10.2140/agt.2024.24.4731
Keywords: fibrations, higher categories, bicategories

Gagna, Andrea 1 ; Harpaz, Yonatan 2 ; Lanari, Edoardo 1

1 Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
2 Institut Galilée, Université Paris 13, Villeta-neuse, France
@article{10_2140_agt_2024_24_4731,
     author = {Gagna, Andrea and Harpaz, Yonatan and Lanari, Edoardo},
     title = {Cartesian fibrations of (\ensuremath{\infty},2){\textendash}categories},
     journal = {Algebraic and Geometric Topology},
     pages = {4731--4778},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2024},
     doi = {10.2140/agt.2024.24.4731},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4731/}
}
TY  - JOUR
AU  - Gagna, Andrea
AU  - Harpaz, Yonatan
AU  - Lanari, Edoardo
TI  - Cartesian fibrations of (∞,2)–categories
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 4731
EP  - 4778
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4731/
DO  - 10.2140/agt.2024.24.4731
ID  - 10_2140_agt_2024_24_4731
ER  - 
%0 Journal Article
%A Gagna, Andrea
%A Harpaz, Yonatan
%A Lanari, Edoardo
%T Cartesian fibrations of (∞,2)–categories
%J Algebraic and Geometric Topology
%D 2024
%P 4731-4778
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.4731/
%R 10.2140/agt.2024.24.4731
%F 10_2140_agt_2024_24_4731
Gagna, Andrea; Harpaz, Yonatan; Lanari, Edoardo. Cartesian fibrations of (∞,2)–categories. Algebraic and Geometric Topology, Tome 24 (2024) no. 9, pp. 4731-4778. doi: 10.2140/agt.2024.24.4731

Cité par Sources :