An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs
Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3719-3758

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce and study an algorithm that constructs a discrete gradient field on any simplicial complex. With a computational complexity similar to that of existing methods, our algorithmic gradient field is always maximal and in a number of cases even optimal. We make a thorough analysis of the resulting gradient field in the case of Munkres discrete model for Conf ⁡ (Km,2), the configuration space of ordered pairs of noncolliding particles moving on the complete graph Km on m vertices. This allows us to describe in full the cohomology algebra H∗(Conf ⁡ (Km,2);R) for any commutative unital ring R. As an application we prove that, although Conf ⁡ (Km,2) is outside the “stable” regime, all its topological complexities are maximal when m ≥ 4.

DOI : 10.2140/agt.2024.24.3719
Keywords: discrete Morse theory, discrete gradient field, ordered configuration spaces on graphs

González, Emilio J 1 ; González, Jesús 1

1 Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
@article{10_2140_agt_2024_24_3719,
     author = {Gonz\'alez, Emilio J and Gonz\'alez, Jes\'us},
     title = {An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs},
     journal = {Algebraic and Geometric Topology},
     pages = {3719--3758},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2024},
     doi = {10.2140/agt.2024.24.3719},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3719/}
}
TY  - JOUR
AU  - González, Emilio J
AU  - González, Jesús
TI  - An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs
JO  - Algebraic and Geometric Topology
PY  - 2024
SP  - 3719
EP  - 3758
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3719/
DO  - 10.2140/agt.2024.24.3719
ID  - 10_2140_agt_2024_24_3719
ER  - 
%0 Journal Article
%A González, Emilio J
%A González, Jesús
%T An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs
%J Algebraic and Geometric Topology
%D 2024
%P 3719-3758
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3719/
%R 10.2140/agt.2024.24.3719
%F 10_2140_agt_2024_24_3719
González, Emilio J; González, Jesús. An algorithmic discrete gradient field and the cohomology algebra of configuration spaces of two points on complete graphs. Algebraic and Geometric Topology, Tome 24 (2024) no. 7, pp. 3719-3758. doi: 10.2140/agt.2024.24.3719

Cité par Sources :