Hyperbolic homology 3–spheres from drum polyhedra
Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3543-3570
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct explicit families of hyperbolic homology spheres, by surgery on links with a large number of components or by surgery on knots. In both cases the original cusped manifolds are obtained from basic ideal polyhedra, which allows us to get further geometric properties, such as geometric convergence to ℍ3 and arbitrarily large Heegaard genus. In the same construction we also find a family of hyperbolic knots converging geometrically to ℍ3.
Keywords:
hyperbolic homology $3$–spheres, Heegaard genus
Affiliations des auteurs :
Díaz, Raquel 1 ; Estévez, José L 2
@article{10_2140_agt_2024_24_3543,
author = {D{\'\i}az, Raquel and Est\'evez, Jos\'e L},
title = {Hyperbolic homology 3{\textendash}spheres from drum polyhedra},
journal = {Algebraic and Geometric Topology},
pages = {3543--3570},
publisher = {mathdoc},
volume = {24},
number = {6},
year = {2024},
doi = {10.2140/agt.2024.24.3543},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3543/}
}
TY - JOUR AU - Díaz, Raquel AU - Estévez, José L TI - Hyperbolic homology 3–spheres from drum polyhedra JO - Algebraic and Geometric Topology PY - 2024 SP - 3543 EP - 3570 VL - 24 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3543/ DO - 10.2140/agt.2024.24.3543 ID - 10_2140_agt_2024_24_3543 ER -
%0 Journal Article %A Díaz, Raquel %A Estévez, José L %T Hyperbolic homology 3–spheres from drum polyhedra %J Algebraic and Geometric Topology %D 2024 %P 3543-3570 %V 24 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.3543/ %R 10.2140/agt.2024.24.3543 %F 10_2140_agt_2024_24_3543
Díaz, Raquel; Estévez, José L. Hyperbolic homology 3–spheres from drum polyhedra. Algebraic and Geometric Topology, Tome 24 (2024) no. 6, pp. 3543-3570. doi: 10.2140/agt.2024.24.3543
Cité par Sources :