Comparison of period coordinates and Teichmüller distances
Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2451-2508
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that when two unit-area quadratic differentials are 𝜖–close with respect to good systems of period coordinates and lie over a compact subset K of the moduli space of Riemann surfaces ℳg,n, then their underlying Riemann surfaces are C𝜖α–close in the Teichmüller metric. Here, α depends only on the genus g and the number of marked points, while C depends on K.
Keywords:
Teichmüller, quadratic differential, flat surface
Affiliations des auteurs :
Frankel, Ian 1
@article{10_2140_agt_2024_24_2451,
author = {Frankel, Ian},
title = {Comparison of period coordinates and {Teichm\"uller} distances},
journal = {Algebraic and Geometric Topology},
pages = {2451--2508},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2024},
doi = {10.2140/agt.2024.24.2451},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2451/}
}
TY - JOUR AU - Frankel, Ian TI - Comparison of period coordinates and Teichmüller distances JO - Algebraic and Geometric Topology PY - 2024 SP - 2451 EP - 2508 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2024.24.2451/ DO - 10.2140/agt.2024.24.2451 ID - 10_2140_agt_2024_24_2451 ER -
Frankel, Ian. Comparison of period coordinates and Teichmüller distances. Algebraic and Geometric Topology, Tome 24 (2024) no. 5, pp. 2451-2508. doi: 10.2140/agt.2024.24.2451
Cité par Sources :