Geometric triangulations of a family of hyperbolic 3–braids
Algebraic and Geometric Topology, Tome 23 (2023) no. 9, pp. 4309-4348
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct topological triangulations for complements of (−2,3,n)–pretzel knots and links with n ≥ 7. Following a procedure outlined by Futer and Guéritaud, we use a theorem of Casson and Rivin to prove the constructed triangulations are geometric. Futer, Kalfagianni and Purcell have shown (indirectly) that such braids are hyperbolic. The new result here is a direct proof.
Keywords:
hyperbolic links, geometric triangulations
Affiliations des auteurs :
Nimershiem, Barbara 1
@article{10_2140_agt_2023_23_4309,
author = {Nimershiem, Barbara},
title = {Geometric triangulations of a family of hyperbolic 3{\textendash}braids},
journal = {Algebraic and Geometric Topology},
pages = {4309--4348},
publisher = {mathdoc},
volume = {23},
number = {9},
year = {2023},
doi = {10.2140/agt.2023.23.4309},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.4309/}
}
TY - JOUR AU - Nimershiem, Barbara TI - Geometric triangulations of a family of hyperbolic 3–braids JO - Algebraic and Geometric Topology PY - 2023 SP - 4309 EP - 4348 VL - 23 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.4309/ DO - 10.2140/agt.2023.23.4309 ID - 10_2140_agt_2023_23_4309 ER -
%0 Journal Article %A Nimershiem, Barbara %T Geometric triangulations of a family of hyperbolic 3–braids %J Algebraic and Geometric Topology %D 2023 %P 4309-4348 %V 23 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.4309/ %R 10.2140/agt.2023.23.4309 %F 10_2140_agt_2023_23_4309
Nimershiem, Barbara. Geometric triangulations of a family of hyperbolic 3–braids. Algebraic and Geometric Topology, Tome 23 (2023) no. 9, pp. 4309-4348. doi: 10.2140/agt.2023.23.4309
Cité par Sources :