A uniformizable spherical CR structure on a two-cusped hyperbolic 3–manifold
Algebraic and Geometric Topology, Tome 23 (2023) no. 9, pp. 4143-4184
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let 〈I1,I2,I3〉 be the complex hyperbolic (4,4,∞) triangle group. We prove Schwartz’s conjecture that 〈I1,I2,I3〉 is discrete and faithful if and only if I1I3I2I3 is nonelliptic. If I1I3I2I3 is parabolic, we show that the even subgroup 〈I2I3,I2I1〉 is the holonomy representation of a uniformizable spherical CR structure on the two-cusped hyperbolic 3–manifold s782 in SnapPy notation.
Keywords:
complex hyperbolic space, spherical CR uniformization,
triangle groups, Ford domain, hyperbolic $3$–manifolds
Affiliations des auteurs :
Jiang, Yueping 1 ; Wang, Jieyan 1 ; Xie, Baohua 1
@article{10_2140_agt_2023_23_4143,
author = {Jiang, Yueping and Wang, Jieyan and Xie, Baohua},
title = {A uniformizable spherical {CR} structure on a two-cusped hyperbolic 3{\textendash}manifold},
journal = {Algebraic and Geometric Topology},
pages = {4143--4184},
publisher = {mathdoc},
volume = {23},
number = {9},
year = {2023},
doi = {10.2140/agt.2023.23.4143},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.4143/}
}
TY - JOUR AU - Jiang, Yueping AU - Wang, Jieyan AU - Xie, Baohua TI - A uniformizable spherical CR structure on a two-cusped hyperbolic 3–manifold JO - Algebraic and Geometric Topology PY - 2023 SP - 4143 EP - 4184 VL - 23 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.4143/ DO - 10.2140/agt.2023.23.4143 ID - 10_2140_agt_2023_23_4143 ER -
%0 Journal Article %A Jiang, Yueping %A Wang, Jieyan %A Xie, Baohua %T A uniformizable spherical CR structure on a two-cusped hyperbolic 3–manifold %J Algebraic and Geometric Topology %D 2023 %P 4143-4184 %V 23 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.4143/ %R 10.2140/agt.2023.23.4143 %F 10_2140_agt_2023_23_4143
Jiang, Yueping; Wang, Jieyan; Xie, Baohua. A uniformizable spherical CR structure on a two-cusped hyperbolic 3–manifold. Algebraic and Geometric Topology, Tome 23 (2023) no. 9, pp. 4143-4184. doi: 10.2140/agt.2023.23.4143
Cité par Sources :