Two-dimensional extended homotopy field theories
Algebraic and Geometric Topology, Tome 23 (2023) no. 9, pp. 3909-3996

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give another definition of 2–dimensional extended homotopy field theories (EHFTs) with aspherical targets and classify them. When the target of EHFT is chosen to be a K(G,1)–space, we classify EHFTs taking values in the symmetric monoidal bicategory of algebras, bimodules, and bimodule maps by certain Frobenius G–algebras called quasibiangular G–algebras. As an application, for any discrete group G, we verify a special case of the (G×SO ⁡ (2))–structured cobordism hypothesis due to Lurie.

DOI : 10.2140/agt.2023.23.3909
Classification : 57R56
Keywords: HQFTs, extended TQFTs

Sözer, Kürşat 1

1 Le laboratoire de mathématiques Paul Painlevé, Université de Lille, Lille, France
@article{10_2140_agt_2023_23_3909,
     author = {S\"ozer, K\"ur\c{s}at},
     title = {Two-dimensional extended homotopy field theories},
     journal = {Algebraic and Geometric Topology},
     pages = {3909--3996},
     publisher = {mathdoc},
     volume = {23},
     number = {9},
     year = {2023},
     doi = {10.2140/agt.2023.23.3909},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3909/}
}
TY  - JOUR
AU  - Sözer, Kürşat
TI  - Two-dimensional extended homotopy field theories
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 3909
EP  - 3996
VL  - 23
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3909/
DO  - 10.2140/agt.2023.23.3909
ID  - 10_2140_agt_2023_23_3909
ER  - 
%0 Journal Article
%A Sözer, Kürşat
%T Two-dimensional extended homotopy field theories
%J Algebraic and Geometric Topology
%D 2023
%P 3909-3996
%V 23
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3909/
%R 10.2140/agt.2023.23.3909
%F 10_2140_agt_2023_23_3909
Sözer, Kürşat. Two-dimensional extended homotopy field theories. Algebraic and Geometric Topology, Tome 23 (2023) no. 9, pp. 3909-3996. doi: 10.2140/agt.2023.23.3909

Cité par Sources :