Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We provide explicit formulas for the integer-valued smooth concordance invariant υ(K) = ΥK(1) for every 3–braid knot K. We determine this invariant, which was defined by Ozsváth, Stipsicz and Szabó (2017), by constructing cobordisms between 3–braid knots and (connected sums of) torus knots. As an application, we show that for positive 3–braid knots K several alternating distances all equal the sum g(K) + υ(K), where g(K) denotes the 3–genus of K. In particular, we compute the alternation number, the dealternating number and the Turaev genus for all positive 3–braid knots. We also provide upper and lower bounds on the alternation number and dealternating number of every 3–braid knot which differ by 1.
Truöl, Paula 1
@article{10_2140_agt_2023_23_3763,
author = {Tru\"ol, Paula},
title = {The upsilon invariant at 1 of 3{\textendash}braid knots},
journal = {Algebraic and Geometric Topology},
pages = {3763--3804},
publisher = {mathdoc},
volume = {23},
number = {8},
year = {2023},
doi = {10.2140/agt.2023.23.3763},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3763/}
}
TY - JOUR AU - Truöl, Paula TI - The upsilon invariant at 1 of 3–braid knots JO - Algebraic and Geometric Topology PY - 2023 SP - 3763 EP - 3804 VL - 23 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3763/ DO - 10.2140/agt.2023.23.3763 ID - 10_2140_agt_2023_23_3763 ER -
Truöl, Paula. The upsilon invariant at 1 of 3–braid knots. Algebraic and Geometric Topology, Tome 23 (2023) no. 8, pp. 3763-3804. doi: 10.2140/agt.2023.23.3763
Cité par Sources :