Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the homotopy type of bifiltrations of compact manifolds induced as the preimage of filtrations of ℝ2 for generic smooth functions f : M → ℝ2. The primary goal of the paper is to allow for a simple description of the multigraded persistent homology associated to such filtrations. Our main result is a description of the evolution of the bifiltration of f in terms of cellular attachments. Analogs of the Morse–Conley equation and Morse inequalities along so-called persistence paths are derived, and a scheme for computing pathwise barcodes is proposed.
Budney, Ryan 1 ; Kaczynski, Tomasz 2
@article{10_2140_agt_2023_23_2895,
author = {Budney, Ryan and Kaczynski, Tomasz},
title = {Bifiltrations and persistence paths for {2{\textendash}Morse} functions},
journal = {Algebraic and Geometric Topology},
pages = {2895--2924},
publisher = {mathdoc},
volume = {23},
number = {6},
year = {2023},
doi = {10.2140/agt.2023.23.2895},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.2895/}
}
TY - JOUR AU - Budney, Ryan AU - Kaczynski, Tomasz TI - Bifiltrations and persistence paths for 2–Morse functions JO - Algebraic and Geometric Topology PY - 2023 SP - 2895 EP - 2924 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.2895/ DO - 10.2140/agt.2023.23.2895 ID - 10_2140_agt_2023_23_2895 ER -
%0 Journal Article %A Budney, Ryan %A Kaczynski, Tomasz %T Bifiltrations and persistence paths for 2–Morse functions %J Algebraic and Geometric Topology %D 2023 %P 2895-2924 %V 23 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.2895/ %R 10.2140/agt.2023.23.2895 %F 10_2140_agt_2023_23_2895
Budney, Ryan; Kaczynski, Tomasz. Bifiltrations and persistence paths for 2–Morse functions. Algebraic and Geometric Topology, Tome 23 (2023) no. 6, pp. 2895-2924. doi: 10.2140/agt.2023.23.2895
Cité par Sources :