Algebraic filling inequalities and cohomological width
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2855-2898

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In his work on singularities, expanders and topology of maps, Gromov showed, using isoperimetric inequalities in graded algebras, that every real-valued map on the n–torus admits a fibre whose homological size is bounded below by some universal constant depending on n. He obtained similar estimates for maps with values in finite-dimensional complexes, by a Lusternik–Schnirelmann-type argument.

We describe a new homological filling technique which enables us to derive sharp lower bounds in these theorems in certain situations. This partly realises a programme envisaged by Gromov.

In contrast to previous approaches, our methods imply similar lower bounds for maps defined on products of higher-dimensional spheres.

DOI : 10.2140/agt.2019.19.2855
Classification : 55N05, 55P62, 55S35
Keywords: waist inequalities, space of cycles, filling inequalities, cohomological complexity, tori, essential manifolds, rational homotopy theory

Alagalingam, Meru 1

1 Universität Augsburg, Augsburg, Germany
@article{10_2140_agt_2019_19_2855,
     author = {Alagalingam, Meru},
     title = {Algebraic filling inequalities and cohomological width},
     journal = {Algebraic and Geometric Topology},
     pages = {2855--2898},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2019},
     doi = {10.2140/agt.2019.19.2855},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2855/}
}
TY  - JOUR
AU  - Alagalingam, Meru
TI  - Algebraic filling inequalities and cohomological width
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 2855
EP  - 2898
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2855/
DO  - 10.2140/agt.2019.19.2855
ID  - 10_2140_agt_2019_19_2855
ER  - 
%0 Journal Article
%A Alagalingam, Meru
%T Algebraic filling inequalities and cohomological width
%J Algebraic and Geometric Topology
%D 2019
%P 2855-2898
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2855/
%R 10.2140/agt.2019.19.2855
%F 10_2140_agt_2019_19_2855
Alagalingam, Meru. Algebraic filling inequalities and cohomological width. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2855-2898. doi: 10.2140/agt.2019.19.2855

Cité par Sources :