A combinatorial model for the known Bousfield classes
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2677-2713
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a combinatorial construction of an ordered semiring A, and show that it can be identified with a certain subquotient of the semiring of p–local Bousfield classes, containing almost all of the classes that have previously been named and studied. This is a convenient way to encapsulate most of the known results about Bousfield classes.
Classification :
55P42, 55P60, 16Y60
Keywords: Bousfield class
Keywords: Bousfield class
Affiliations des auteurs :
Strickland, Neil 1
@article{10_2140_agt_2019_19_2677,
author = {Strickland, Neil},
title = {A combinatorial model for the known {Bousfield} classes},
journal = {Algebraic and Geometric Topology},
pages = {2677--2713},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2019},
doi = {10.2140/agt.2019.19.2677},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2677/}
}
TY - JOUR AU - Strickland, Neil TI - A combinatorial model for the known Bousfield classes JO - Algebraic and Geometric Topology PY - 2019 SP - 2677 EP - 2713 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2677/ DO - 10.2140/agt.2019.19.2677 ID - 10_2140_agt_2019_19_2677 ER -
Strickland, Neil. A combinatorial model for the known Bousfield classes. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2677-2713. doi: 10.2140/agt.2019.19.2677
Cité par Sources :