Intertwining for semidirect product operads
Algebraic and Geometric Topology, Tome 19 (2019) no. 4, pp. 1903-1934
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the semidirect product construction for G–operads and the levelwise Borel construction for G–cooperads are intertwined by the topological operadic bar construction. En route we give a generalization of the bar construction of M Ching from reduced to certain nonreduced topological operads.
Classification :
18D50, 55U30, 57T30
Keywords: operads, Koszul duality, bar construction, little disks
Keywords: operads, Koszul duality, bar construction, little disks
Affiliations des auteurs :
Ward, Benjamin 1
@article{10_2140_agt_2019_19_1903,
author = {Ward, Benjamin},
title = {Intertwining for semidirect product operads},
journal = {Algebraic and Geometric Topology},
pages = {1903--1934},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2019},
doi = {10.2140/agt.2019.19.1903},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1903/}
}
TY - JOUR AU - Ward, Benjamin TI - Intertwining for semidirect product operads JO - Algebraic and Geometric Topology PY - 2019 SP - 1903 EP - 1934 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1903/ DO - 10.2140/agt.2019.19.1903 ID - 10_2140_agt_2019_19_1903 ER -
Ward, Benjamin. Intertwining for semidirect product operads. Algebraic and Geometric Topology, Tome 19 (2019) no. 4, pp. 1903-1934. doi: 10.2140/agt.2019.19.1903
Cité par Sources :