Truncated Heegaard Floer homology and knot concordance invariants
Algebraic and Geometric Topology, Tome 19 (2019) no. 4, pp. 1881-1901

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a sequence of smooth concordance invariants νn(K) defined using truncated Heegaard Floer homology. The invariants generalize the concordance invariants ν of Ozsváth and Szabó and ν+ of Hom and Wu. We exhibit an example in which the gap between two consecutive elements in the sequence νn can be arbitrarily large. We also prove that the sequence νn contains more concordance information than τ, ν, ν′, ν+ and ν+′ .

DOI : 10.2140/agt.2019.19.1881
Classification : 57M25, 57M27, 57R58
Keywords: knot theory, concordance, Heegaard Floer homology

Truong, Linh 1

1 Department of Mathematics, Columbia University, New York, NY, United States
@article{10_2140_agt_2019_19_1881,
     author = {Truong, Linh},
     title = {Truncated {Heegaard} {Floer} homology and knot concordance invariants},
     journal = {Algebraic and Geometric Topology},
     pages = {1881--1901},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2019},
     doi = {10.2140/agt.2019.19.1881},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1881/}
}
TY  - JOUR
AU  - Truong, Linh
TI  - Truncated Heegaard Floer homology and knot concordance invariants
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 1881
EP  - 1901
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1881/
DO  - 10.2140/agt.2019.19.1881
ID  - 10_2140_agt_2019_19_1881
ER  - 
%0 Journal Article
%A Truong, Linh
%T Truncated Heegaard Floer homology and knot concordance invariants
%J Algebraic and Geometric Topology
%D 2019
%P 1881-1901
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1881/
%R 10.2140/agt.2019.19.1881
%F 10_2140_agt_2019_19_1881
Truong, Linh. Truncated Heegaard Floer homology and knot concordance invariants. Algebraic and Geometric Topology, Tome 19 (2019) no. 4, pp. 1881-1901. doi: 10.2140/agt.2019.19.1881

Cité par Sources :