The topology of arrangements of ideal type
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1341-1358

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In 1962, Fadell and Neuwirth showed that the configuration space of the braid arrangement is aspherical. Having generalized this to many real reflection groups, Brieskorn conjectured this for all finite Coxeter groups. This in turn follows from Deligne’s seminal work from 1972, where he showed that the complexification of every real simplicial arrangement is a K(π,1)–arrangement.

We study the K(π,1)–property for a certain class of subarrangements of Weyl arrangements, the so-called arrangements of ideal type Aℐ. These stem from ideals ℐ in the set of positive roots of a reduced root system. We show that the K(π,1)–property holds for all arrangements Aℐ if the underlying Weyl group is classical and that it extends to most of the Aℐ if the underlying Weyl group is of exceptional type. Conjecturally this holds for all Aℐ. In general, the Aℐ are neither simplicial nor is their complexification of fiber type.

DOI : 10.2140/agt.2019.19.1341
Classification : 14N20, 20F55, 52C35, 13N15
Keywords: Weyl arrangement, arrangement of ideal type, $K(\pi,1)$ arrangement

Amend, Nils 1 ; Röhrle, Gerhard 2

1 Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
2 Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany
@article{10_2140_agt_2019_19_1341,
     author = {Amend, Nils and R\"ohrle, Gerhard},
     title = {The topology of arrangements of ideal type},
     journal = {Algebraic and Geometric Topology},
     pages = {1341--1358},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2019},
     doi = {10.2140/agt.2019.19.1341},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1341/}
}
TY  - JOUR
AU  - Amend, Nils
AU  - Röhrle, Gerhard
TI  - The topology of arrangements of ideal type
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 1341
EP  - 1358
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1341/
DO  - 10.2140/agt.2019.19.1341
ID  - 10_2140_agt_2019_19_1341
ER  - 
%0 Journal Article
%A Amend, Nils
%A Röhrle, Gerhard
%T The topology of arrangements of ideal type
%J Algebraic and Geometric Topology
%D 2019
%P 1341-1358
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1341/
%R 10.2140/agt.2019.19.1341
%F 10_2140_agt_2019_19_1341
Amend, Nils; Röhrle, Gerhard. The topology of arrangements of ideal type. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1341-1358. doi: 10.2140/agt.2019.19.1341

Cité par Sources :