Classifying spaces for 1–truncated compact Lie groups
Algebraic and Geometric Topology, Tome 18 (2018) no. 1, pp. 525-546
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A 1–truncated compact Lie group is any extension of a finite group by a torus. In this note we compute the homotopy types of Map∗(BG,BH), Map(BG,BH), and Map(EG,BG H) for compact Lie groups G and H with H 1–truncated, showing that they are computed entirely in terms of spaces of homomorphisms from G to H. These results generalize the well-known case when H is finite, and the case when H is compact abelian due to Lashof, May, and Segal.
Classification :
55R91, 55P92, 55R35, 55R37
Keywords: classifying spaces, equivariant
Keywords: classifying spaces, equivariant
Affiliations des auteurs :
Rezk, Charles 1
@article{10_2140_agt_2018_18_525,
author = {Rezk, Charles},
title = {Classifying spaces for 1{\textendash}truncated compact {Lie} groups},
journal = {Algebraic and Geometric Topology},
pages = {525--546},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2018},
doi = {10.2140/agt.2018.18.525},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.525/}
}
TY - JOUR AU - Rezk, Charles TI - Classifying spaces for 1–truncated compact Lie groups JO - Algebraic and Geometric Topology PY - 2018 SP - 525 EP - 546 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.525/ DO - 10.2140/agt.2018.18.525 ID - 10_2140_agt_2018_18_525 ER -
Rezk, Charles. Classifying spaces for 1–truncated compact Lie groups. Algebraic and Geometric Topology, Tome 18 (2018) no. 1, pp. 525-546. doi: 10.2140/agt.2018.18.525
Cité par Sources :