Ends of Schreier graphs of hyperbolic groups
Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3089-3118
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the number of ends of a Schreier graph of a hyperbolic group. Let G be a hyperbolic group and let H be a subgroup of G. In general, there is no algorithm to compute the number of ends of a Schreier graph of the pair (G,H). However, assuming that H is a quasiconvex subgroup of G, we construct an algorithm.
Classification :
20F65, 20F10
Keywords: relative ends, Schreier graphs, hyperbolic groups, Bestvina–Mess condition
Keywords: relative ends, Schreier graphs, hyperbolic groups, Bestvina–Mess condition
Affiliations des auteurs :
Vonseel, Audrey 1
@article{10_2140_agt_2018_18_3089,
author = {Vonseel, Audrey},
title = {Ends of {Schreier} graphs of hyperbolic groups},
journal = {Algebraic and Geometric Topology},
pages = {3089--3118},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2018},
doi = {10.2140/agt.2018.18.3089},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3089/}
}
TY - JOUR AU - Vonseel, Audrey TI - Ends of Schreier graphs of hyperbolic groups JO - Algebraic and Geometric Topology PY - 2018 SP - 3089 EP - 3118 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3089/ DO - 10.2140/agt.2018.18.3089 ID - 10_2140_agt_2018_18_3089 ER -
Vonseel, Audrey. Ends of Schreier graphs of hyperbolic groups. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3089-3118. doi: 10.2140/agt.2018.18.3089
Cité par Sources :