Ends of Schreier graphs of hyperbolic groups
Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3089-3118

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the number of ends of a Schreier graph of a hyperbolic group. Let G be a hyperbolic group and let H be a subgroup of G. In general, there is no algorithm to compute the number of ends of a Schreier graph of the pair (G,H). However, assuming that H is a quasiconvex subgroup of G, we construct an algorithm.

DOI : 10.2140/agt.2018.18.3089
Classification : 20F65, 20F10
Keywords: relative ends, Schreier graphs, hyperbolic groups, Bestvina–Mess condition

Vonseel, Audrey 1

1 Institut de Recherche Mathématique Avancée, Université de Strasbourg, CNRS, UMR 7501, Strasbourg, France
@article{10_2140_agt_2018_18_3089,
     author = {Vonseel, Audrey},
     title = {Ends of {Schreier} graphs of hyperbolic groups},
     journal = {Algebraic and Geometric Topology},
     pages = {3089--3118},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2018},
     doi = {10.2140/agt.2018.18.3089},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3089/}
}
TY  - JOUR
AU  - Vonseel, Audrey
TI  - Ends of Schreier graphs of hyperbolic groups
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3089
EP  - 3118
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3089/
DO  - 10.2140/agt.2018.18.3089
ID  - 10_2140_agt_2018_18_3089
ER  - 
%0 Journal Article
%A Vonseel, Audrey
%T Ends of Schreier graphs of hyperbolic groups
%J Algebraic and Geometric Topology
%D 2018
%P 3089-3118
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3089/
%R 10.2140/agt.2018.18.3089
%F 10_2140_agt_2018_18_3089
Vonseel, Audrey. Ends of Schreier graphs of hyperbolic groups. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3089-3118. doi: 10.2140/agt.2018.18.3089

Cité par Sources :