The fundamental group of locally standard T–manifolds
Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3031-3035

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We calculate the fundamental group of locally standard T–manifolds under the assumption that the principal T–bundle obtained from the free T–orbits is trivial. This family of manifolds contains nonsingular toric varieties which may be noncompact, quasitoric manifolds and toric origami manifolds with coörientable folding hypersurface. Although the fundamental groups of the above three kinds of manifolds are well-studied, we give a uniform and simple method to generalize the formulas of their fundamental groups.

DOI : 10.2140/agt.2018.18.3031
Classification : 14F35, 57S25, 57R19
Keywords: fundamental group, torus manifolds

Zeng, Haozhi 1

1 School of Mathematical Sciences, Fudan University, Shanghai, China
@article{10_2140_agt_2018_18_3031,
     author = {Zeng, Haozhi},
     title = {The fundamental group of locally standard {T{\textendash}manifolds}},
     journal = {Algebraic and Geometric Topology},
     pages = {3031--3035},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2018},
     doi = {10.2140/agt.2018.18.3031},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3031/}
}
TY  - JOUR
AU  - Zeng, Haozhi
TI  - The fundamental group of locally standard T–manifolds
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3031
EP  - 3035
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3031/
DO  - 10.2140/agt.2018.18.3031
ID  - 10_2140_agt_2018_18_3031
ER  - 
%0 Journal Article
%A Zeng, Haozhi
%T The fundamental group of locally standard T–manifolds
%J Algebraic and Geometric Topology
%D 2018
%P 3031-3035
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3031/
%R 10.2140/agt.2018.18.3031
%F 10_2140_agt_2018_18_3031
Zeng, Haozhi. The fundamental group of locally standard T–manifolds. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3031-3035. doi: 10.2140/agt.2018.18.3031

Cité par Sources :