Refinements of the holonomic approximation lemma
Algebraic and Geometric Topology, Tome 18 (2018) no. 4, pp. 2265-2303

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The holonomic approximation lemma of Eliashberg and Mishachev is a powerful tool in the philosophy of the h–principle. By carefully keeping track of the quantitative geometry behind the holonomic approximation process, we establish several refinements of this lemma. Gromov’s idea from convex integration of working “one pure partial derivative at a time” is central to the discussion. We give applications of our results to flexible symplectic and contact topology.

DOI : 10.2140/agt.2018.18.2265
Classification : 53DXX, 57R99, 57R45, 57R17
Keywords: h-principle, holonomic approximation, flexible, flexibility, cutoff

Álvarez-Gavela, Daniel 1

1 Department of Mathematics, Stanford University, Stanford, CA, United States
@article{10_2140_agt_2018_18_2265,
     author = {\'Alvarez-Gavela, Daniel},
     title = {Refinements of the holonomic approximation lemma},
     journal = {Algebraic and Geometric Topology},
     pages = {2265--2303},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2018},
     doi = {10.2140/agt.2018.18.2265},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2265/}
}
TY  - JOUR
AU  - Álvarez-Gavela, Daniel
TI  - Refinements of the holonomic approximation lemma
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 2265
EP  - 2303
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2265/
DO  - 10.2140/agt.2018.18.2265
ID  - 10_2140_agt_2018_18_2265
ER  - 
%0 Journal Article
%A Álvarez-Gavela, Daniel
%T Refinements of the holonomic approximation lemma
%J Algebraic and Geometric Topology
%D 2018
%P 2265-2303
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2265/
%R 10.2140/agt.2018.18.2265
%F 10_2140_agt_2018_18_2265
Álvarez-Gavela, Daniel. Refinements of the holonomic approximation lemma. Algebraic and Geometric Topology, Tome 18 (2018) no. 4, pp. 2265-2303. doi: 10.2140/agt.2018.18.2265

Cité par Sources :