Refinements of the holonomic approximation lemma
Algebraic and Geometric Topology, Tome 18 (2018) no. 4, pp. 2265-2303
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The holonomic approximation lemma of Eliashberg and Mishachev is a powerful tool in the philosophy of the h–principle. By carefully keeping track of the quantitative geometry behind the holonomic approximation process, we establish several refinements of this lemma. Gromov’s idea from convex integration of working “one pure partial derivative at a time” is central to the discussion. We give applications of our results to flexible symplectic and contact topology.
Classification :
53DXX, 57R99, 57R45, 57R17
Keywords: h-principle, holonomic approximation, flexible, flexibility, cutoff
Keywords: h-principle, holonomic approximation, flexible, flexibility, cutoff
Affiliations des auteurs :
Álvarez-Gavela, Daniel 1
@article{10_2140_agt_2018_18_2265,
author = {\'Alvarez-Gavela, Daniel},
title = {Refinements of the holonomic approximation lemma},
journal = {Algebraic and Geometric Topology},
pages = {2265--2303},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2018},
doi = {10.2140/agt.2018.18.2265},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2265/}
}
TY - JOUR AU - Álvarez-Gavela, Daniel TI - Refinements of the holonomic approximation lemma JO - Algebraic and Geometric Topology PY - 2018 SP - 2265 EP - 2303 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2265/ DO - 10.2140/agt.2018.18.2265 ID - 10_2140_agt_2018_18_2265 ER -
Álvarez-Gavela, Daniel. Refinements of the holonomic approximation lemma. Algebraic and Geometric Topology, Tome 18 (2018) no. 4, pp. 2265-2303. doi: 10.2140/agt.2018.18.2265
Cité par Sources :