Equivariant dendroidal sets
Algebraic and Geometric Topology, Tome 18 (2018) no. 4, pp. 2179-2244
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We extend the Cisinski–Moerdijk–Weiss theory of ∞–operads to the equivariant setting to obtain a notion of G-∞–operads that encode “equivariant operads with norm maps” up to homotopy. At the root of this work is the identification of a suitable category of G–trees together with a notion of G–inner horns capable of encoding the compositions of norm maps.
Additionally, we follow Blumberg and Hill by constructing suitable variants associated to each of the indexing systems featured in their work.
Classification :
55U10, 55U35, 55U40, 18G30
Keywords: operads, dendroidal sets, $\infty$–operads, equivariant homotopy theory
Keywords: operads, dendroidal sets, $\infty$–operads, equivariant homotopy theory
Affiliations des auteurs :
Pereira, Luís Alexandre 1
@article{10_2140_agt_2018_18_2179,
author = {Pereira, Lu{\'\i}s Alexandre},
title = {Equivariant dendroidal sets},
journal = {Algebraic and Geometric Topology},
pages = {2179--2244},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2018},
doi = {10.2140/agt.2018.18.2179},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2179/}
}
Pereira, Luís Alexandre. Equivariant dendroidal sets. Algebraic and Geometric Topology, Tome 18 (2018) no. 4, pp. 2179-2244. doi: 10.2140/agt.2018.18.2179
Cité par Sources :