Topology of holomorphic Lefschetz pencils on the four-torus
Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1515-1572

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We discuss topological properties of holomorphic Lefschetz pencils on the four-torus. Relying on the theory of moduli spaces of polarized abelian surfaces, we first prove that, under some mild assumptions, the (smooth) isomorphism class of a holomorphic Lefschetz pencil on the four-torus is uniquely determined by its genus and divisibility. We then explicitly give a system of vanishing cycles of the genus-3 holomorphic Lefschetz pencil on the four-torus due to Smith, and obtain those of holomorphic pencils with higher genera by taking finite unbranched coverings. One can also obtain the monodromy factorization associated with Smith’s pencil in a combinatorial way. This construction allows us to generalize Smith’s pencil to higher genera, which is a good source of pencils on the (topological) four-torus. As another application of the combinatorial construction, for any torus bundle over the torus with a section we construct a genus-3 Lefschetz pencil whose total space is homeomorphic to that of the given bundle.

DOI : 10.2140/agt.2018.18.1515
Classification : 57R35, 14D05, 20F38, 32Q55, 57R17
Keywords: Lefschetz pencil, polarized abelian surfaces, symplectic Calabi–Yau four-manifolds, monodromy factorizations, mapping class groups

Hamada, Noriyuki 1 ; Hayano, Kenta 2

1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, United States
2 Department of Mathematics, Keio University, Yagami Campus, Yokohama, Japan
@article{10_2140_agt_2018_18_1515,
     author = {Hamada, Noriyuki and Hayano, Kenta},
     title = {Topology of holomorphic {Lefschetz} pencils on the four-torus},
     journal = {Algebraic and Geometric Topology},
     pages = {1515--1572},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     doi = {10.2140/agt.2018.18.1515},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1515/}
}
TY  - JOUR
AU  - Hamada, Noriyuki
AU  - Hayano, Kenta
TI  - Topology of holomorphic Lefschetz pencils on the four-torus
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1515
EP  - 1572
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1515/
DO  - 10.2140/agt.2018.18.1515
ID  - 10_2140_agt_2018_18_1515
ER  - 
%0 Journal Article
%A Hamada, Noriyuki
%A Hayano, Kenta
%T Topology of holomorphic Lefschetz pencils on the four-torus
%J Algebraic and Geometric Topology
%D 2018
%P 1515-1572
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1515/
%R 10.2140/agt.2018.18.1515
%F 10_2140_agt_2018_18_1515
Hamada, Noriyuki; Hayano, Kenta. Topology of holomorphic Lefschetz pencils on the four-torus. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1515-1572. doi: 10.2140/agt.2018.18.1515

Cité par Sources :