Taut branched surfaces from veering triangulations
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1089-1114
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let M be a closed hyperbolic 3–manifold with a fibered face σ of the unit ball of the Thurston norm on H2(M). If M satisfies a certain condition related to Agol’s veering triangulations, we construct a taut branched surface in M spanning σ. This partially answers a 1986 question of Oertel, and extends an earlier partial answer due to Mosher.
Classification :
57M99
Keywords: branched surface, Thurston norm, veering triangulation
Keywords: branched surface, Thurston norm, veering triangulation
Affiliations des auteurs :
Landry, Michael 1
@article{10_2140_agt_2018_18_1089,
author = {Landry, Michael},
title = {Taut branched surfaces from veering triangulations},
journal = {Algebraic and Geometric Topology},
pages = {1089--1114},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
doi = {10.2140/agt.2018.18.1089},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1089/}
}
TY - JOUR AU - Landry, Michael TI - Taut branched surfaces from veering triangulations JO - Algebraic and Geometric Topology PY - 2018 SP - 1089 EP - 1114 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1089/ DO - 10.2140/agt.2018.18.1089 ID - 10_2140_agt_2018_18_1089 ER -
Landry, Michael. Taut branched surfaces from veering triangulations. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1089-1114. doi: 10.2140/agt.2018.18.1089
Cité par Sources :