Taut branched surfaces from veering triangulations
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1089-1114

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a closed hyperbolic 3–manifold with a fibered face σ of the unit ball of the Thurston norm on H2(M). If M satisfies a certain condition related to Agol’s veering triangulations, we construct a taut branched surface in M spanning σ. This partially answers a 1986 question of Oertel, and extends an earlier partial answer due to Mosher.

DOI : 10.2140/agt.2018.18.1089
Classification : 57M99
Keywords: branched surface, Thurston norm, veering triangulation

Landry, Michael 1

1 Mathematics Department, Yale University, New Haven, CT, United States
@article{10_2140_agt_2018_18_1089,
     author = {Landry, Michael},
     title = {Taut branched surfaces from veering triangulations},
     journal = {Algebraic and Geometric Topology},
     pages = {1089--1114},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     doi = {10.2140/agt.2018.18.1089},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1089/}
}
TY  - JOUR
AU  - Landry, Michael
TI  - Taut branched surfaces from veering triangulations
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1089
EP  - 1114
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1089/
DO  - 10.2140/agt.2018.18.1089
ID  - 10_2140_agt_2018_18_1089
ER  - 
%0 Journal Article
%A Landry, Michael
%T Taut branched surfaces from veering triangulations
%J Algebraic and Geometric Topology
%D 2018
%P 1089-1114
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1089/
%R 10.2140/agt.2018.18.1089
%F 10_2140_agt_2018_18_1089
Landry, Michael. Taut branched surfaces from veering triangulations. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1089-1114. doi: 10.2140/agt.2018.18.1089

Cité par Sources :