Splitting the spectral flow and the SU(3) Casson invariant for spliced sums
Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 865-902
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3–manifolds split along a torus.
Keywords:
gauge theory, spectral flow, Maslov index, spliced sum,
torus knot
Affiliations des auteurs :
Boden, Hans U 1 ; Himpel, Benjamin 2
@article{10_2140_agt_2009_9_865,
author = {Boden, Hans U and Himpel, Benjamin},
title = {Splitting the spectral flow and the {SU(3)} {Casson} invariant for spliced sums},
journal = {Algebraic and Geometric Topology},
pages = {865--902},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
doi = {10.2140/agt.2009.9.865},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.865/}
}
TY - JOUR AU - Boden, Hans U AU - Himpel, Benjamin TI - Splitting the spectral flow and the SU(3) Casson invariant for spliced sums JO - Algebraic and Geometric Topology PY - 2009 SP - 865 EP - 902 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.865/ DO - 10.2140/agt.2009.9.865 ID - 10_2140_agt_2009_9_865 ER -
%0 Journal Article %A Boden, Hans U %A Himpel, Benjamin %T Splitting the spectral flow and the SU(3) Casson invariant for spliced sums %J Algebraic and Geometric Topology %D 2009 %P 865-902 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.865/ %R 10.2140/agt.2009.9.865 %F 10_2140_agt_2009_9_865
Boden, Hans U; Himpel, Benjamin. Splitting the spectral flow and the SU(3) Casson invariant for spliced sums. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 865-902. doi: 10.2140/agt.2009.9.865
Cité par Sources :