The volume conjecture for augmented knotted trivalent graphs
Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 691-722
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We propose to generalize the volume conjecture to knotted trivalent graphs and we prove the conjecture for all augmented knotted trivalent graphs. As a corollary we find that for any link L there is an arithmetic link containing L for which the volume conjecture holds.
Keywords:
volume conjecture, Jones polynomial, Kashaev invariant,
knotted trivalent graph, augmented, knot complement,
hyperbolic volume, graph complement, graph invariant,
octahedra, hyperbolic, 6j symbol, skein theory
Affiliations des auteurs :
van der Veen, Roland 1
@article{10_2140_agt_2009_9_691,
author = {van der Veen, Roland},
title = {The volume conjecture for augmented knotted trivalent graphs},
journal = {Algebraic and Geometric Topology},
pages = {691--722},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
doi = {10.2140/agt.2009.9.691},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.691/}
}
TY - JOUR AU - van der Veen, Roland TI - The volume conjecture for augmented knotted trivalent graphs JO - Algebraic and Geometric Topology PY - 2009 SP - 691 EP - 722 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.691/ DO - 10.2140/agt.2009.9.691 ID - 10_2140_agt_2009_9_691 ER -
van der Veen, Roland. The volume conjecture for augmented knotted trivalent graphs. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 691-722. doi: 10.2140/agt.2009.9.691
Cité par Sources :