Functoriality for the 𝔰𝔲3 Khovanov homology
Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 625-690
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the categorified su3 quantum link invariant is functorial with respect to tangle cobordisms. This is in contrast to the categorified su2 theory, which was not functorial as originally defined.
We use methods of Morrison and Nieh and Bar-Natan to construct explicit chain maps for each variation of the third Reidemeister move. Then, to show functoriality, we modify arguments used by Clark, Morrison and Walker to show that induced chain maps are invariant, up to homotopy, under Carter and Saito’s movie moves.
Keywords:
Khovanov, categorification, link cobordism, su(3), quantum
invariant
Affiliations des auteurs :
Clark, David 1
@article{10_2140_agt_2009_9_625,
author = {Clark, David},
title = {Functoriality for the \ensuremath{\mathfrak{s}}\ensuremath{\mathfrak{u}}3 {Khovanov} homology},
journal = {Algebraic and Geometric Topology},
pages = {625--690},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
doi = {10.2140/agt.2009.9.625},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.625/}
}
TY - JOUR AU - Clark, David TI - Functoriality for the 𝔰𝔲3 Khovanov homology JO - Algebraic and Geometric Topology PY - 2009 SP - 625 EP - 690 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.625/ DO - 10.2140/agt.2009.9.625 ID - 10_2140_agt_2009_9_625 ER -
Clark, David. Functoriality for the 𝔰𝔲3 Khovanov homology. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 625-690. doi: 10.2140/agt.2009.9.625
Cité par Sources :