Volume estimates for equiangular hyperbolic Coxeter polyhedra
Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 1225-1254
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
An equiangular hyperbolic Coxeter polyhedron is a hyperbolic polyhedron where all dihedral angles are equal to π∕n for some fixed n ∈ ℤ, n ≥ 2. It is a consequence of Andreev’s theorem that either n = 3 and the polyhedron has all ideal vertices or that n = 2. Volume estimates are given for all equiangular hyperbolic Coxeter polyhedra.
Keywords:
hyperbolic geometry, Coxeter polyhedra, $3$-orbifolds
Affiliations des auteurs :
Atkinson, Christopher K 1
@article{10_2140_agt_2009_9_1225,
author = {Atkinson, Christopher K},
title = {Volume estimates for equiangular hyperbolic {Coxeter} polyhedra},
journal = {Algebraic and Geometric Topology},
pages = {1225--1254},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
doi = {10.2140/agt.2009.9.1225},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1225/}
}
TY - JOUR AU - Atkinson, Christopher K TI - Volume estimates for equiangular hyperbolic Coxeter polyhedra JO - Algebraic and Geometric Topology PY - 2009 SP - 1225 EP - 1254 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1225/ DO - 10.2140/agt.2009.9.1225 ID - 10_2140_agt_2009_9_1225 ER -
%0 Journal Article %A Atkinson, Christopher K %T Volume estimates for equiangular hyperbolic Coxeter polyhedra %J Algebraic and Geometric Topology %D 2009 %P 1225-1254 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1225/ %R 10.2140/agt.2009.9.1225 %F 10_2140_agt_2009_9_1225
Atkinson, Christopher K. Volume estimates for equiangular hyperbolic Coxeter polyhedra. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 1225-1254. doi: 10.2140/agt.2009.9.1225
Cité par Sources :