Morse inequalities for orbifold cohomology
Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 1105-1175

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper begins the study of Morse theory for orbifolds, or equivalently for differentiable Deligne–Mumford stacks. The main result is an analogue of the Morse inequalities that relates the orbifold Betti numbers of an almost-complex orbifold to the critical points of a Morse function on the orbifold. We also show that a generic function on an orbifold is Morse. In obtaining these results we develop for differentiable Deligne–Mumford stacks those tools of differential geometry and topology—flows of vector fields, the strong topology—that are essential to the development of Morse theory on manifolds.

DOI : 10.2140/agt.2009.9.1105
Keywords: Morse theory, orbifolds

Hepworth, Richard 1

1 Department of Pure Mathematics, University of Sheffield, Sheffield, United Kingdom
@article{10_2140_agt_2009_9_1105,
     author = {Hepworth, Richard},
     title = {Morse inequalities for orbifold cohomology},
     journal = {Algebraic and Geometric Topology},
     pages = {1105--1175},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     doi = {10.2140/agt.2009.9.1105},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1105/}
}
TY  - JOUR
AU  - Hepworth, Richard
TI  - Morse inequalities for orbifold cohomology
JO  - Algebraic and Geometric Topology
PY  - 2009
SP  - 1105
EP  - 1175
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1105/
DO  - 10.2140/agt.2009.9.1105
ID  - 10_2140_agt_2009_9_1105
ER  - 
%0 Journal Article
%A Hepworth, Richard
%T Morse inequalities for orbifold cohomology
%J Algebraic and Geometric Topology
%D 2009
%P 1105-1175
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1105/
%R 10.2140/agt.2009.9.1105
%F 10_2140_agt_2009_9_1105
Hepworth, Richard. Morse inequalities for orbifold cohomology. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 1105-1175. doi: 10.2140/agt.2009.9.1105

Cité par Sources :