The ℓ2–homology of even Coxeter groups
Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 1089-1104
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a Coxeter system (W,S), there is an associated CW–complex, denoted Σ(W,S) (or simply Σ), on which W acts properly and cocompactly. This is the Davis complex. The nerve L of (W,S) is a finite simplicial complex. When L is a triangulation of S3, Σ is a contractible 4–manifold. We prove that when (W,S) is an even Coxeter system and L is a flag triangulation of S3, then the reduced ℓ2–homology of Σ vanishes in all but the middle dimension.
Keywords:
Coxeter group, $\ell ^2$-homology, Singer Conjecture, Davis
complex, aspherical manifold
Affiliations des auteurs :
Schroeder, Timothy A 1
@article{10_2140_agt_2009_9_1089,
author = {Schroeder, Timothy A},
title = {The \ensuremath{\ell}2{\textendash}homology of even {Coxeter} groups},
journal = {Algebraic and Geometric Topology},
pages = {1089--1104},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
doi = {10.2140/agt.2009.9.1089},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1089/}
}
TY - JOUR AU - Schroeder, Timothy A TI - The ℓ2–homology of even Coxeter groups JO - Algebraic and Geometric Topology PY - 2009 SP - 1089 EP - 1104 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.1089/ DO - 10.2140/agt.2009.9.1089 ID - 10_2140_agt_2009_9_1089 ER -
Schroeder, Timothy A. The ℓ2–homology of even Coxeter groups. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 1089-1104. doi: 10.2140/agt.2009.9.1089
Cité par Sources :