Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using spinning we analyze in a geometric way Haefliger’s smoothly knotted (4k−1)–spheres in the 6k–sphere. Consider the 2–torus standardly embedded in the 3–sphere, which is further standardly embedded in the 6–sphere. At each point of the 2–torus we have the normal disk pair: a 4–dimensional disk and a 1–dimensional proper sub-disk. We consider an isotopy (deformation) of the normal 1–disk inside the normal 4–disk, by using a map from the 2–torus to the space of long knots in 4–space, first considered by Budney. We use this isotopy in a construction called spinning about a submanifold introduced by the first-named author. Our main observation is that the resultant spun knot provides a generator of the Haefliger knot group of knotted 3–spheres in the 6–sphere. Our argument uses an explicit construction of a Seifert surface for the spun knot and works also for higher-dimensional Haefliger knots.
Roseman, Dennis 1 ; Takase, Masamichi 2
@article{10_2140_agt_2007_7_359,
author = {Roseman, Dennis and Takase, Masamichi},
title = {High-codimensional knots spun about manifolds},
journal = {Algebraic and Geometric Topology},
pages = {359--377},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2007},
doi = {10.2140/agt.2007.7.359},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2007.7.359/}
}
TY - JOUR AU - Roseman, Dennis AU - Takase, Masamichi TI - High-codimensional knots spun about manifolds JO - Algebraic and Geometric Topology PY - 2007 SP - 359 EP - 377 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2007.7.359/ DO - 10.2140/agt.2007.7.359 ID - 10_2140_agt_2007_7_359 ER -
Roseman, Dennis; Takase, Masamichi. High-codimensional knots spun about manifolds. Algebraic and Geometric Topology, Tome 7 (2007) no. 1, pp. 359-377. doi: 10.2140/agt.2007.7.359
Cité par Sources :