Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 927-941
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by $\mathcal {SO}_1, \mathcal {SO}_2, \dots , \mathcal {SO}_6$. Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$ among all trees and molecular trees of order $n$, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.
I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by $\mathcal {SO}_1, \mathcal {SO}_2, \dots , \mathcal {SO}_6$. Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$ among all trees and molecular trees of order $n$, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.
DOI :
10.21136/CMJ.2024.0221-24
Classification :
05C09, 05C50, 05C92
Keywords: tree; molecular tree; Sombor-index-like graph invariant; extremal value
Keywords: tree; molecular tree; Sombor-index-like graph invariant; extremal value
@article{10_21136_CMJ_2024_0221_24,
author = {Gao, Wei},
title = {Extremal trees and molecular trees with respect to the {Sombor-index-like} graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$},
journal = {Czechoslovak Mathematical Journal},
pages = {927--941},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0221-24},
mrnumber = {4804969},
zbl = {07953687},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0221-24/}
}
TY - JOUR
AU - Gao, Wei
TI - Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$
JO - Czechoslovak Mathematical Journal
PY - 2024
SP - 927
EP - 941
VL - 74
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0221-24/
DO - 10.21136/CMJ.2024.0221-24
LA - en
ID - 10_21136_CMJ_2024_0221_24
ER -
%0 Journal Article
%A Gao, Wei
%T Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$
%J Czechoslovak Mathematical Journal
%D 2024
%P 927-941
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0221-24/
%R 10.21136/CMJ.2024.0221-24
%G en
%F 10_21136_CMJ_2024_0221_24
Gao, Wei. Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $\mathcal {SO}_5$ and $\mathcal {SO}_6$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 927-941. doi: 10.21136/CMJ.2024.0221-24
Cité par Sources :