Voir la notice de l'article provenant de la source Numdam
In this paper we show the stability of the ball as maximizer of the Riesz potential among sets of given volume. The stability is proved with sharp exponent 1∕2, and is valid for any dimension N ≥ 2 and any power 1 < α < N.
@article{COCV_2020__26_1_A113_0, author = {Fusco, Nicola and Pratelli, Aldo}, title = {Sharp stability for the {Riesz} potential}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020024}, mrnumber = {4185064}, zbl = {1473.26036}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020024/} }
TY - JOUR AU - Fusco, Nicola AU - Pratelli, Aldo TI - Sharp stability for the Riesz potential JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020024/ DO - 10.1051/cocv/2020024 LA - en ID - COCV_2020__26_1_A113_0 ER -
%0 Journal Article %A Fusco, Nicola %A Pratelli, Aldo %T Sharp stability for the Riesz potential %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020024/ %R 10.1051/cocv/2020024 %G en %F COCV_2020__26_1_A113_0
Fusco, Nicola; Pratelli, Aldo. Sharp stability for the Riesz potential. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 113. doi : 10.1051/cocv/2020024. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020024/
[1] Minimality via second variation for a nonlocal isoperimetric problem. Comm. Math. Phys. 322 (2013) 515–557. | MR | Zbl | DOI
, and ,[2] Mathematical Aspects of Evolving Interfaces, Vol. 1812 of Lecture Notes in Mathematics. Springer, Berlin (2003) 1–52. | Zbl
,[3] A note on the Sobolev inequality. J. Funct. Anal. 100 (1991) 18–24. | MR | Zbl | DOI
and ,[4] Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2015) 1777–1831. | MR | Zbl | DOI
, and ,[5] Geometric stability of the Coulomb energy. Calc. Var. PDE 54 (2015) 3241–3250. | MR | Zbl | DOI
and ,[6] A sharpened Riesz-Sobolev inequality, preprint. Preprint (2017). | arXiv
,[7] A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012) 617–643. | MR | Zbl | DOI
and ,[8] Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys. 336 (2015) 441–507. | MR | Zbl | DOI
, , , and ,[9] Proof of spherical flocking based on quantitative rearrangement inequalities. Preprint (2019). | arXiv | MR
and ,[10] A note on a theorem of M. Christ. Preprint (2019). | arXiv
and ,[11] Stability in the isoperimetric problem for convex or nearly spherical domains in . Trans. Amer. Math. Soc. 314 (1989) 619–638. | MR | Zbl
,[12] The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | MR | Zbl | DOI
, and ,[13] Graduate Studies in Mathematics, 2nd edn. Vol 14. American Mathematical Society, Providence, RI (2001). | MR | Zbl | DOI
and ,[14] The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 109–145. | MR | Zbl | mathdoc-id | DOI
,[15] Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 34. Springer-Verlag, Berlin (1996). | MR | Zbl
,[16] Topics in Optimal transportation, Graduate studies in Mathematics, Vol. 58. AMS, Providence, RI (2003). | MR | Zbl
,Cité par Sources :