Optimal control of static contact in finite strain elasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 95.

Voir la notice de l'article provenant de la source Numdam

We consider the optimal control of elastic contact problems in the regime of finite deformations. We derive a result on existence of optimal solutions and propose a regularization of the contact constraints by a penalty formulation. Subsequential convergence of sequences of solutions of the regularized problem to original solutions is studied. Based on these results, a numerical path-following scheme is constructed and its performance is tested.

DOI : 10.1051/cocv/2020014
Classification : 49J20, 74B20, 74M15
Keywords: Nonlinear elasticity, optimal control, contact problem
@article{COCV_2020__26_1_A95_0,
     author = {Schiela, Anton and Stoecklein, Matthias},
     title = {Optimal control of static contact in finite strain elasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020014},
     mrnumber = {4175376},
     zbl = {1460.49003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020014/}
}
TY  - JOUR
AU  - Schiela, Anton
AU  - Stoecklein, Matthias
TI  - Optimal control of static contact in finite strain elasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020014/
DO  - 10.1051/cocv/2020014
LA  - en
ID  - COCV_2020__26_1_A95_0
ER  - 
%0 Journal Article
%A Schiela, Anton
%A Stoecklein, Matthias
%T Optimal control of static contact in finite strain elasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020014/
%R 10.1051/cocv/2020014
%G en
%F COCV_2020__26_1_A95_0
Schiela, Anton; Stoecklein, Matthias. Optimal control of static contact in finite strain elasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 95. doi : 10.1051/cocv/2020014. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020014/

[1] R.A. Adams, Pure and Applied Mathematics Sobolev Spaces Adams. Academic Press, Cambridge, Massachusetts, USA (1975).

[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403. | MR | Zbl | DOI

[3] J.M. Ball, Some Open Problems in Elasticity, in Geometry, mechanics, and dynamics. Springer, Berlin (2002), 3–59. | MR | Zbl

[4] P. Bastian, M. Blatt, C. Engwer, A. Dedner, R. Klöfkorn, S. Kuttanikkad, M. Ohlberger and O. Sander, The distributed and unified numerics environment (dune), in Proc. of the 19th Symposium on Simulation Technique in Hannover (2006).

[5] T. Betz, Optimal control of two variational inequalities arising in solid mechanics. Ph.D. thesis, TU Dortmund, Germany (2015).

[6] C. Cartis, N. Gould and P.L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Prog. 127 (2011) 245–295. | MR | Zbl | DOI

[7] P.G. Ciarlet, Mathematical Elasticity: Three-dimensional elasticity, Number Bd. 1. Elsevier, North-Holland (1994). | Zbl

[8] P.G. Ciarlet and Jindřich Nečas, Unilateral problems in nonlinear, three-dimensional elasticity. Arch. Ration. Mech. Anal. 87 (1985) 319–338. | MR | Zbl | DOI

[9] M. Cocu, Existence of solutions of signorini problems with friction. Int. J. Engi. Sci. 22 (1984) 567–575. | MR | Zbl | DOI

[10] T. Davis and I. Duff, An unsymmetric-pattern multifrontal method for sparse lu factorization. SIAM J. Matrix Anal. Appl. 18 (1997) 140–158. | MR | Zbl | DOI

[11] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer Publishing Company, Incorporated, Berlin (2011). | MR | Zbl | DOI

[12] S. Götschel, M. Weiser and A. Schiela. Solving optimal control problems with the kaskade 7 finite element toolbox. In Advances in DUNE. Edited by A. Dedner, B. Flemisch and R. Klöfkorn (2012) 101–112. | DOI

[13] A. Griewank, The modification of newton’s method for unconstrained optimization by bounding cubic terms. Technical Report NA/12, University of Cambridge (1981).

[14] A. Günnel and R. Herzog, Optimal control problems in finite-strain elasticity by inner pressure and fiber tension. Front. Appl. Math. Stat. 2 (2016) 4. | DOI

[15] M. Heinkenschloss and D. Ridzal, A matrix-free trust-region SQP method for equality constrained optimization. SIAM J. Optim. 24 (2014) 1507–1541. | MR | Zbl | DOI

[16] M. Hintermüller, A. Schiela and W. Wollner, The length of the primal-dual path in moreau–yosida-based path-following methods for state constrained optimal control. SIAM J. Optim. 24 (2014) 108–126. | MR | Zbl | DOI

[17] N. Kikuchi and J.T Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods, Vol. 8. SIAM, Philadelphia (1988). | MR | Zbl | DOI

[18] L. Lubkoll. An Optimal Control Approach to Implant Shape Design : Modeling, Analysis and Numerics. Ph.D. thesis, University of Bayreuth Bayreuth, Germany (2015).

[19] L. Lubkoll, Fung - invariant-based modeling. Arch. Numer. Softw. 5 (2017) 1.

[20] L. Lubkoll, A. Schiela and M. Weiser, An optimal control problem in polyconvex hyperelasticity. SIAM J. Control Optim. 52 (2014) 1403–1422. | MR | Zbl | DOI

[21] L. Lubkoll, A. Schiela and Martin Weiser, An affine covariant composite step method for optimization with pdes as equality constraints. Optim. Methods Softw. 32 (2017) 1132–1161. | MR | Zbl | DOI

[22] J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. Theor. Methods Appl. 11 (1987) 407–428. | MR | Zbl | DOI

[23] G. Müller and A. Schiela, On the control of time discretized dynamic contact problems. Comput. Optim. Appl. 68 (2017) 243–287. | MR | Zbl | DOI

[24] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics. Springer, Berlin Heidelberg (2012). | MR | Zbl | DOI

[25] J.T. Oden and J.A.C. Martins, Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52 (1985) 527–634. | MR | Zbl | DOI

[26] E.O. Omojokun, Trust Region Algorithms for Optimization with Nonlinear Equality and Inequality Constraints. Ph.D. thesis, University of Colorado at Boulder, Boulder, CO, USA (1989).

[27] D. Ridzal, Trust-region SQP methods with inexact linear system solves for large-scale optimization. Ph.D. thesis, Rice University, Texas, USA (2006). | MR

[28] M. Schaller, A. Schiela and M. Stöcklein, A composite step method with inexact step computations for pde constrained optimization. Preprint SPP1962-098 (2018).

[29] A. Schiela and M. Stöcklein, Algorithms for optimal control of elastic contact problems with finite strain. University Bayreuth, Germany. Available from: https://eref.uni-bayreuth.de/52240/ (2019).

[30] A. Signorini, Sopra alcune questioni di elastostatica. Atti della Societa Italiana per il Progresso delle Scienze (1933). | JFM

[31] A. Vardi, A trust region algorithm for equality constrained minimization: convergence properties and implementation. SIAM J. Numer. Anal. 22 (1985) 575–591. | MR | Zbl | DOI

[32] J.C. Wehrstedt, Formoptimierung mit Variationsungleichungen als Nebenbedingung und eine Anwendung in der Kieferchirurgie. Ph.D. thesis, TU München, Germany (2007).

[33] M. Weiser, P. Deuflhard and B. Erdmann, Affine conjugate adaptive Newton methods for nonlinear elastomechanics. Opt. Meth. Softw. 22 (2007) 414–431. | MR | Zbl

[34] J.C. Ziems and S. Ulbrich, Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21 (2011) 1–40. | MR | Zbl | DOI

Cité par Sources :