Periods of elliptic surfaces with $p_g=q=1$
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that the period mapping is dominant for elliptic surfaces over an elliptic curve with $12$ nodal fibers, and that its degree is larger than $1$. This settles the final case of infinitesimal Torelli for a generic elliptic surface.
@article{10_1017_fms_2024_85,
author = {Philip Engel and Fran\c{c}ois Greer and Abigail Ward},
title = {Periods of elliptic surfaces with $p_g=q=1$},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.85},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.85/}
}
TY - JOUR AU - Philip Engel AU - François Greer AU - Abigail Ward TI - Periods of elliptic surfaces with $p_g=q=1$ JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.85/ DO - 10.1017/fms.2024.85 LA - en ID - 10_1017_fms_2024_85 ER -
Philip Engel; François Greer; Abigail Ward. Periods of elliptic surfaces with $p_g=q=1$. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.85
Cité par Sources :