Periods of elliptic surfaces with $p_g=q=1$
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the period mapping is dominant for elliptic surfaces over an elliptic curve with $12$ nodal fibers, and that its degree is larger than $1$. This settles the final case of infinitesimal Torelli for a generic elliptic surface.
@article{10_1017_fms_2024_85,
     author = {Philip Engel and Fran\c{c}ois Greer and Abigail Ward},
     title = {Periods of elliptic surfaces with $p_g=q=1$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.85},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.85/}
}
TY  - JOUR
AU  - Philip Engel
AU  - François Greer
AU  - Abigail Ward
TI  - Periods of elliptic surfaces with $p_g=q=1$
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.85/
DO  - 10.1017/fms.2024.85
LA  - en
ID  - 10_1017_fms_2024_85
ER  - 
%0 Journal Article
%A Philip Engel
%A François Greer
%A Abigail Ward
%T Periods of elliptic surfaces with $p_g=q=1$
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.85/
%R 10.1017/fms.2024.85
%G en
%F 10_1017_fms_2024_85
Philip Engel; François Greer; Abigail Ward. Periods of elliptic surfaces with $p_g=q=1$. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.85

Cité par Sources :