Quasiminimality of complex powers
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

The complex field, equipped with the multivalued functions of raising to each complex power, is quasiminimal, proving a conjecture of Zilber and providing evidence towards his stronger conjecture that the complex exponential field is quasiminimal.
@article{10_1017_fms_2024_82,
     author = {Francesco Gallinaro and Jonathan Kirby},
     title = {Quasiminimality of complex powers},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.82/}
}
TY  - JOUR
AU  - Francesco Gallinaro
AU  - Jonathan Kirby
TI  - Quasiminimality of complex powers
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.82/
DO  - 10.1017/fms.2024.82
LA  - en
ID  - 10_1017_fms_2024_82
ER  - 
%0 Journal Article
%A Francesco Gallinaro
%A Jonathan Kirby
%T Quasiminimality of complex powers
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.82/
%R 10.1017/fms.2024.82
%G en
%F 10_1017_fms_2024_82
Francesco Gallinaro; Jonathan Kirby. Quasiminimality of complex powers. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.82

Cité par Sources :