Quasiminimality of complex powers
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
The complex field, equipped with the multivalued functions of raising to each complex power, is quasiminimal, proving a conjecture of Zilber and providing evidence towards his stronger conjecture that the complex exponential field is quasiminimal.
@article{10_1017_fms_2024_82,
author = {Francesco Gallinaro and Jonathan Kirby},
title = {Quasiminimality of complex powers},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.82},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.82/}
}
Francesco Gallinaro; Jonathan Kirby. Quasiminimality of complex powers. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.82
Cité par Sources :