Hyperelliptic Gorenstein curves and logarithmic differentials
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We produce a flexible tool for contracting subcurves of logarithmic hyperelliptic curves, which is local around the subcurve and commutes with arbitrary base-change. As an application, we prove that a hyperelliptic multiscale differential determines a sequence of Gorenstein contractions of the underlying nodal curve, such that each meromorphic piece of the differential descends to generate the dualising bundle of one of the Gorenstein contractions. This is the first piece of evidence for a more general conjecture about limits of meromorphic differentials.
@article{10_1017_fms_2024_76,
     author = {Luca Battistella and Sebastian Bozlee},
     title = {Hyperelliptic {Gorenstein} curves and logarithmic differentials},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.76},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.76/}
}
TY  - JOUR
AU  - Luca Battistella
AU  - Sebastian Bozlee
TI  - Hyperelliptic Gorenstein curves and logarithmic differentials
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.76/
DO  - 10.1017/fms.2024.76
LA  - en
ID  - 10_1017_fms_2024_76
ER  - 
%0 Journal Article
%A Luca Battistella
%A Sebastian Bozlee
%T Hyperelliptic Gorenstein curves and logarithmic differentials
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.76/
%R 10.1017/fms.2024.76
%G en
%F 10_1017_fms_2024_76
Luca Battistella; Sebastian Bozlee. Hyperelliptic Gorenstein curves and logarithmic differentials. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.76

Cité par Sources :