Hyperelliptic Gorenstein curves and logarithmic differentials
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We produce a flexible tool for contracting subcurves of logarithmic hyperelliptic curves, which is local around the subcurve and commutes with arbitrary base-change. As an application, we prove that a hyperelliptic multiscale differential determines a sequence of Gorenstein contractions of the underlying nodal curve, such that each meromorphic piece of the differential descends to generate the dualising bundle of one of the Gorenstein contractions. This is the first piece of evidence for a more general conjecture about limits of meromorphic differentials.
@article{10_1017_fms_2024_76,
author = {Luca Battistella and Sebastian Bozlee},
title = {Hyperelliptic {Gorenstein} curves and logarithmic differentials},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.76},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.76/}
}
TY - JOUR AU - Luca Battistella AU - Sebastian Bozlee TI - Hyperelliptic Gorenstein curves and logarithmic differentials JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.76/ DO - 10.1017/fms.2024.76 LA - en ID - 10_1017_fms_2024_76 ER -
Luca Battistella; Sebastian Bozlee. Hyperelliptic Gorenstein curves and logarithmic differentials. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.76
Cité par Sources :