Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light $c\in (c_0, \infty )$, for some threshold $c_0>0$ depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime $c\rightarrow \infty $ and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting.The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime $c\to \infty $ allows us to derive a robust nonlinear energy estimate which holds uniformly in c. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system.This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as $c\to \infty $.
@article{10_1017_fms_2024_60,
     author = {Diogo Ars\'enio and Zineb Hassainia and Haroune Houamed},
     title = {Axisymmetric {Incompressible} {Viscous} {Plasmas:} {Global} {Well-Posedness} and {Asymptotics}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.60},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.60/}
}
TY  - JOUR
AU  - Diogo Arsénio
AU  - Zineb Hassainia
AU  - Haroune Houamed
TI  - Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.60/
DO  - 10.1017/fms.2024.60
LA  - en
ID  - 10_1017_fms_2024_60
ER  - 
%0 Journal Article
%A Diogo Arsénio
%A Zineb Hassainia
%A Haroune Houamed
%T Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.60/
%R 10.1017/fms.2024.60
%G en
%F 10_1017_fms_2024_60
Diogo Arsénio; Zineb Hassainia; Haroune Houamed. Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.60

Cité par Sources :