Bounds on multiplicities of symmetric pairs of finite groups
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
@article{10_1017_fms_2024_58,
     author = {Avraham Aizenbud and Nir Avni},
     title = {Bounds on multiplicities of symmetric pairs of finite groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.58},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.58/}
}
TY  - JOUR
AU  - Avraham Aizenbud
AU  - Nir Avni
TI  - Bounds on multiplicities of symmetric pairs of finite groups
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.58/
DO  - 10.1017/fms.2024.58
LA  - en
ID  - 10_1017_fms_2024_58
ER  - 
%0 Journal Article
%A Avraham Aizenbud
%A Nir Avni
%T Bounds on multiplicities of symmetric pairs of finite groups
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.58/
%R 10.1017/fms.2024.58
%G en
%F 10_1017_fms_2024_58
Avraham Aizenbud; Nir Avni. Bounds on multiplicities of symmetric pairs of finite groups. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.58

Cité par Sources :