Bounds on multiplicities of symmetric pairs of finite groups
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
@article{10_1017_fms_2024_58,
author = {Avraham Aizenbud and Nir Avni},
title = {Bounds on multiplicities of symmetric pairs of finite groups},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.58},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.58/}
}
TY - JOUR AU - Avraham Aizenbud AU - Nir Avni TI - Bounds on multiplicities of symmetric pairs of finite groups JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.58/ DO - 10.1017/fms.2024.58 LA - en ID - 10_1017_fms_2024_58 ER -
Avraham Aizenbud; Nir Avni. Bounds on multiplicities of symmetric pairs of finite groups. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.58
Cité par Sources :