Strict positivity of Kähler–Einstein currents
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed a little over a decade ago. These currents live on mildly singular compact Kähler spaces X and their two defining properties are the following: They are genuine Kähler–Einstein metrics on $X_{\mathrm {reg}}$, and they admit local bounded potentials near the singularities of X. In this note, we show that these currents dominate a Kähler form near the singular locus, when either X admits a global smoothing, or when X has isolated smoothable singularities. Our results apply to klt pairs and allow us to show that if X is any compact Kähler space of dimension three with log terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.
@article{10_1017_fms_2024_54,
author = {Vincent Guedj and Henri Guenancia and Ahmed Zeriahi},
title = {Strict positivity of {K\"ahler{\textendash}Einstein} currents},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.54},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.54/}
}
TY - JOUR AU - Vincent Guedj AU - Henri Guenancia AU - Ahmed Zeriahi TI - Strict positivity of Kähler–Einstein currents JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.54/ DO - 10.1017/fms.2024.54 LA - en ID - 10_1017_fms_2024_54 ER -
Vincent Guedj; Henri Guenancia; Ahmed Zeriahi. Strict positivity of Kähler–Einstein currents. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.54
Cité par Sources :