On the weight zero compactly supported cohomology of ${\mathcal {H}}_{g,n}$
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
For $g\ge 2$ and $n\ge 0$, let $\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$ denote the complex moduli stack of n-marked smooth hyperelliptic curves of genus g. A normal crossings compactification of this space is provided by the theory of pointed admissible $\mathbb {Z}/2\mathbb {Z}$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of $\mathcal {H}_{g, n}$. Using this graph complex, we give a sum-over-graphs formula for the $S_n$-equivariant weight zero compactly supported Euler characteristic of $\mathcal {H}_{g, n}$. This formula allows for the computer-aided calculation, for each $g\le 7$, of the generating function $\mathsf {h}_g$ for these equivariant Euler characteristics for all n. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissible G-covers of genus zero curves, when G is abelian, as a symmetric $\Delta $-complex. We use these complexes to generalize our formula for $\mathsf {h}_g$ to moduli spaces of n-pointed smooth abelian covers of genus zero curves.
@article{10_1017_fms_2024_53,
author = {Madeline Brandt and Melody Chan and Siddarth Kannan},
title = {On the weight zero compactly supported cohomology of ${\mathcal {H}}_{g,n}$},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.53},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.53/}
}
TY - JOUR
AU - Madeline Brandt
AU - Melody Chan
AU - Siddarth Kannan
TI - On the weight zero compactly supported cohomology of ${\mathcal {H}}_{g,n}$
JO - Forum of Mathematics, Sigma
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.53/
DO - 10.1017/fms.2024.53
LA - en
ID - 10_1017_fms_2024_53
ER -
%0 Journal Article
%A Madeline Brandt
%A Melody Chan
%A Siddarth Kannan
%T On the weight zero compactly supported cohomology of ${\mathcal {H}}_{g,n}$
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.53/
%R 10.1017/fms.2024.53
%G en
%F 10_1017_fms_2024_53
Madeline Brandt; Melody Chan; Siddarth Kannan. On the weight zero compactly supported cohomology of ${\mathcal {H}}_{g,n}$. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.53
Cité par Sources :