Adams’ cobar construction as a monoidal $E_{\infty }$-coalgebra model of the based loop space
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal $E_\infty $-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures.
@article{10_1017_fms_2024_50,
author = {Anibal M. Medina-Mardones and Manuel Rivera},
title = {Adams{\textquoteright} cobar construction as a monoidal $E_{\infty }$-coalgebra model of the based loop space},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.50},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.50/}
}
TY - JOUR
AU - Anibal M. Medina-Mardones
AU - Manuel Rivera
TI - Adams’ cobar construction as a monoidal $E_{\infty }$-coalgebra model of the based loop space
JO - Forum of Mathematics, Sigma
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.50/
DO - 10.1017/fms.2024.50
LA - en
ID - 10_1017_fms_2024_50
ER -
%0 Journal Article
%A Anibal M. Medina-Mardones
%A Manuel Rivera
%T Adams’ cobar construction as a monoidal $E_{\infty }$-coalgebra model of the based loop space
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.50/
%R 10.1017/fms.2024.50
%G en
%F 10_1017_fms_2024_50
Anibal M. Medina-Mardones; Manuel Rivera. Adams’ cobar construction as a monoidal $E_{\infty }$-coalgebra model of the based loop space. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.50
Cité par Sources :