On divisorial stability of finite covers
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Divisorial stability of a polarised variety is a stronger – but conjecturally equivalent – variant of uniform K-stability introduced by Boucksom–Jonsson. Whereas uniform K-stability is defined in terms of test configurations, divisorial stability is defined in terms of convex combinations of divisorial valuations on the variety.We consider the behaviour of divisorial stability under finite group actions and prove that equivariant divisorial stability of a polarised variety is equivalent to log divisorial stability of its quotient. We use this and an interpolation technique to give a general construction of equivariantly divisorially stable polarised varieties.
@article{10_1017_fms_2024_47,
author = {Ruadha{\'\i} Dervan and Theodoros Stylianos Papazachariou},
title = {On divisorial stability of finite covers},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.47},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.47/}
}
TY - JOUR AU - Ruadhaí Dervan AU - Theodoros Stylianos Papazachariou TI - On divisorial stability of finite covers JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.47/ DO - 10.1017/fms.2024.47 LA - en ID - 10_1017_fms_2024_47 ER -
Ruadhaí Dervan; Theodoros Stylianos Papazachariou. On divisorial stability of finite covers. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.47
Cité par Sources :