Cyclic coverings of genus $2$ curves of Sophie Germain type
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider cyclic unramified coverings of degree d of irreducible complex smooth genus $2$ curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. The rich geometry of the associated Prym map has been studied in several papers, and the cases $d=2, 3, 5, 7$ are quite well understood. Nevertheless, very little is known for higher values of d. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for $d\ge 11$ prime such that $\frac {d-1}2$ is also prime. We use results of arithmetic nature on $GL_2$-type abelian varieties combined with theta-duality techniques.
@article{10_1017_fms_2024_42,
     author = {J.C. Naranjo and A. Ortega and I. Spelta},
     title = {Cyclic coverings of genus $2$ curves of {Sophie} {Germain} type},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.42},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.42/}
}
TY  - JOUR
AU  - J.C. Naranjo
AU  - A. Ortega
AU  - I. Spelta
TI  - Cyclic coverings of genus $2$ curves of Sophie Germain type
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.42/
DO  - 10.1017/fms.2024.42
LA  - en
ID  - 10_1017_fms_2024_42
ER  - 
%0 Journal Article
%A J.C. Naranjo
%A A. Ortega
%A I. Spelta
%T Cyclic coverings of genus $2$ curves of Sophie Germain type
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.42/
%R 10.1017/fms.2024.42
%G en
%F 10_1017_fms_2024_42
J.C. Naranjo; A. Ortega; I. Spelta. Cyclic coverings of genus $2$ curves of Sophie Germain type. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.42

Cité par Sources :