A short proof of the Hanlon-Hicks-Lazarev Theorem
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.
@article{10_1017_fms_2024_40,
     author = {Michael K. Brown and Daniel Erman},
     title = {A short proof of the {Hanlon-Hicks-Lazarev} {Theorem}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.40},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.40/}
}
TY  - JOUR
AU  - Michael K. Brown
AU  - Daniel Erman
TI  - A short proof of the Hanlon-Hicks-Lazarev Theorem
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.40/
DO  - 10.1017/fms.2024.40
LA  - en
ID  - 10_1017_fms_2024_40
ER  - 
%0 Journal Article
%A Michael K. Brown
%A Daniel Erman
%T A short proof of the Hanlon-Hicks-Lazarev Theorem
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.40/
%R 10.1017/fms.2024.40
%G en
%F 10_1017_fms_2024_40
Michael K. Brown; Daniel Erman. A short proof of the Hanlon-Hicks-Lazarev Theorem. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.40

Cité par Sources :