Limit pretrees for free group automorphisms: existence
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element.This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).
@article{10_1017_fms_2024_38,
     author = {Jean Pierre Mutanguha},
     title = {Limit pretrees for free group automorphisms: existence},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.38/}
}
TY  - JOUR
AU  - Jean Pierre Mutanguha
TI  - Limit pretrees for free group automorphisms: existence
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.38/
DO  - 10.1017/fms.2024.38
LA  - en
ID  - 10_1017_fms_2024_38
ER  - 
%0 Journal Article
%A Jean Pierre Mutanguha
%T Limit pretrees for free group automorphisms: existence
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.38/
%R 10.1017/fms.2024.38
%G en
%F 10_1017_fms_2024_38
Jean Pierre Mutanguha. Limit pretrees for free group automorphisms: existence. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.38

Cité par Sources :