A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given $\mu>0$, there exists $n_0$ such that the following holds. Every n-vertex Steiner triple system contains all hypertrees with at most $(1-\mu )n$ vertices whenever $n\geq n_0$. We prove this conjecture.
@article{10_1017_fms_2024_34,
author = {Seonghyuk Im and Jaehoon Kim and Joonkyung Lee and Abhishek Methuku},
title = {A proof of the {Elliott{\textendash}R\"odl} conjecture on hypertrees in {Steiner} triple systems},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.34},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.34/}
}
TY - JOUR AU - Seonghyuk Im AU - Jaehoon Kim AU - Joonkyung Lee AU - Abhishek Methuku TI - A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.34/ DO - 10.1017/fms.2024.34 LA - en ID - 10_1017_fms_2024_34 ER -
%0 Journal Article %A Seonghyuk Im %A Jaehoon Kim %A Joonkyung Lee %A Abhishek Methuku %T A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems %J Forum of Mathematics, Sigma %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.34/ %R 10.1017/fms.2024.34 %G en %F 10_1017_fms_2024_34
Seonghyuk Im; Jaehoon Kim; Joonkyung Lee; Abhishek Methuku. A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.34
Cité par Sources :