Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that the cohomology rings of the moduli space $M_{d,\chi }$ of one-dimensional sheaves on the projective plane are not isomorphic for general different choices of the Euler characteristics. This stands in contrast to the $\chi $-independence of the Betti numbers of these moduli spaces. As a corollary, we deduce that $M_{d,\chi }$ are topologically different unless they are related by obvious symmetries, strengthening a previous result of Woolf distinguishing them as algebraic varieties.
@article{10_1017_fms_2024_31,
author = {Woonam Lim and Miguel Moreira and Weite Pi},
title = {Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.31},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.31/}
}
TY - JOUR
AU - Woonam Lim
AU - Miguel Moreira
AU - Weite Pi
TI - Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$
JO - Forum of Mathematics, Sigma
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.31/
DO - 10.1017/fms.2024.31
LA - en
ID - 10_1017_fms_2024_31
ER -
%0 Journal Article
%A Woonam Lim
%A Miguel Moreira
%A Weite Pi
%T Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.31/
%R 10.1017/fms.2024.31
%G en
%F 10_1017_fms_2024_31
Woonam Lim; Miguel Moreira; Weite Pi. Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.31
Cité par Sources :