Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the cohomology rings of the moduli space $M_{d,\chi }$ of one-dimensional sheaves on the projective plane are not isomorphic for general different choices of the Euler characteristics. This stands in contrast to the $\chi $-independence of the Betti numbers of these moduli spaces. As a corollary, we deduce that $M_{d,\chi }$ are topologically different unless they are related by obvious symmetries, strengthening a previous result of Woolf distinguishing them as algebraic varieties.
@article{10_1017_fms_2024_31,
     author = {Woonam Lim and Miguel Moreira and Weite Pi},
     title = {Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.31/}
}
TY  - JOUR
AU  - Woonam Lim
AU  - Miguel Moreira
AU  - Weite Pi
TI  - Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.31/
DO  - 10.1017/fms.2024.31
LA  - en
ID  - 10_1017_fms_2024_31
ER  - 
%0 Journal Article
%A Woonam Lim
%A Miguel Moreira
%A Weite Pi
%T Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.31/
%R 10.1017/fms.2024.31
%G en
%F 10_1017_fms_2024_31
Woonam Lim; Miguel Moreira; Weite Pi. Cohomological $\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on $\mathbb {P}^2$. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.31

Cité par Sources :